Phone :+33 0555068787 - Fax :+33 0555068888

DPX ${ }^{3} 250$ HP S10 electronic (display version) circuit breakers

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 423423 ; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 423463 ; from 423465 to 423468 ; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518

1. USE

$\mathrm{DPX}^{3} \mathrm{HP}$ platform has been developed to give a new solution of protection devices for a more precise approach in power installations in order to offer the correct answer for different project needs. DPX 3 HP platform provide a complete project approach in premium market segment, offering a range completely suitable for high power application with high performance breakers in compact dimensions and at a competitive costs.
$\mathrm{DPX}^{3} \mathrm{~S} 10$ is a modern approach for electronic protection units that magnifies all flexibility allowed by technology.

2. RANGE

In (A)	DPX $^{\mathbf{3}} \mathbf{2 5 0} \mathbf{~ H P ~ S 1 0 ~ e l e c t r o n i c ~ (d i s p l a y ~ v e r s i o n) ~}$			
	36 kA		50 kA	
	$3 P$	$4 P$	$3 P$	$4 P$
40	423400	423405	423420	423425
100	423401	423406	423421	423426
160	423402	423407	423422	423427
250	423403	423408	423423	423428
70 kA	100 kA			
	$3 P$	$4 P$	$3 P$	$4 P$
40	423440	423445	423450	423455
100	423441	423446	423451	423456
160	423442	423447	423452	423457
250	423443	423448	423453	423458

In (A)	DPX ${ }^{\mathbf{3}} \mathbf{2 5 0}$ HP S10 electronic (display version) with measurement function			
	36 kA		50 kA	
	3P	4P	3P	4P
40	423460	423465	424480	424485
100	423461	423466	424481	424486
160	423462	423467	424482	424487
250	423463	423468	424483	424488
	70 kA		100 kA	
	3P	4P	3P	4P
40	423500	423505	423510	423515
100	423501	423506	423511	423516
160	423502	423507	423512	423517
250	423503	423508	423513	423518

3. DIMENSIONS AND WEIGHTS

3.1 Dimensions

Lateral view

Frontal view (3 and 4 poles)

DPX ${ }^{3} 250$ HP S10 electronic
(display version) circuit breakers
from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 423443 ; from 423445 to 423448 ; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 423463 ; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

Plug-in version (3P)

Plug-in version (4P)

Draw-out version (4P)

$\underline{\text { Rear terminals }}$

DPX³ 250 HP S10 electronic
(display version) circuit breakers
from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

Interlock (3P)
(for rear plate interlock dimension, see relative instruction sheet)

Interlock (4P)

(for rear plate interlock dimension, see relative instruction sheet)

Direct rotary handle

$\underline{\text { Vari-depth rotary handle }}$

DPX ${ }^{3} 250$ HP S10 electronic
(display version) circuit breakers

Reference(s) :
from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 423463 ; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

DPX 320 HP S10 electronic
(display version) circuit breakers

Reference(s) :
from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 423448 ; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 423463 ; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

DPX ${ }^{3} 250$ HP S10 electronic
(display version) circuit breakers

Reference(s) :
from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 423443 ; from 423445 to 423448 ; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 423463 ; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

5.2 Mounting

(see instruction sheet for detailed mounting procedures)

Busbars/cable lugs:

Cables:

DPX³ 250 HP S10 electronic (display version) circuit breakers

Reference(s) :
from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 423463 ; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

6. ELECTRICAL AND MECHANICAL CHARACTERISTICS

Circuit Breaker	DPX ${ }^{3} 250$ HP S 10 F/N/H/L (36kA, 50kA, 70kA, 100kA)
Rated current (A)	40-100-160-250
Poles	3-4
Pole pitch (mm)	35
Rated insulation voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{1}(\mathrm{~V})$	800
Rated operating voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{0}(\mathrm{~V})$	690
Rated impulse withstand current $\mathrm{U}_{\text {imp }}(\mathrm{kV})$	8
Rated frequency (Hz)	50-60
Operating temperature (${ }^{\circ} \mathrm{C}$)	-25 $\div 70$
Mechanical endurance (cycles)	12000
Mechanical endurance with motor control (cycles)	12000
Electrical endurance at I_{n} (cycles)	6000
Electrical endurance at $0.5 \mathrm{I}_{\mathrm{n}}$ (cycles)	6000
Utilization category	A
Suitable for isolation	Yes
Type of protection	Electronic (with display)
Thermal type protection	Adjustable (Mem On/Off)
Ability to enable thermal protection	On/Off
Thermal adjustment $\mathrm{I}_{\mathrm{r}}\left[\mathrm{X} \mathrm{I}_{\mathrm{n}}\right]$	0,2 $\div 1$ (steps 1A)
Thermal adjustment t_{r} [s]	0,04 $\div 15$ (steps 40ms, @6ir)
Thermal time tripping at 2xIn (single pole) [s]	0,44s $\pm 20 \%$ if tr = 0,04s@6ir
Magnetic type protection	Adjustable
Ability to enable magnetic protection	On/Off
Magnetic adjustment $\mathrm{I}_{\text {sd }}\left[\mathrm{X} \mathrm{I}_{\mathrm{r}}\right]$	1,5*10 (steps 1A)
Time adjustement $\mathrm{t}_{\text {sd }}\left(\mathrm{t}=\mathrm{k} \circ \mathrm{l}^{\mathbf{2}} \mathrm{t}=\mathrm{k}\right.$) [s]	40 $\div 480$ (steps 40ms)
Minimum release single pole	$1 \mathrm{I}_{\text {sd }}$
Istantaneous electronic adjustment I_{1}	2ㄴ15 (steps 1A) \& lsf=3250 A
Neutral protection for 4P (\%1 $\mathrm{l}_{\text {th }}$ of phase pole)	OFF-50-100-150-200
Earth leakage trip type	Integrated
Ability to enable earth leakage trip	On/Off
Earth leakage trip $1 \Delta \mathrm{n} / \mathrm{I}_{\mathrm{g}}$ [A/x In]	- $/ 0,2 \div 1$ (steps 0,11n)
Earth leakage trip $\Delta t / t_{g}\left(t=k \circ 1^{2} t=k\right)[s]$	$\begin{aligned} & 0-0,3-1-3 / 0,08 \div 1 \\ & \text { (steps } 40 \mathrm{~ms} \text {) } \end{aligned}$
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) (mm)	$105 \times 165 \times 86$ (3P)
Dimensions (W×H×D) (mm)	$140 \times 165 \times 86$ (4P)

6.1 Main parts constituting the circuit breaker

6.2 Breaking capacity (kA)

		Breaking capacity (kA) \& $\mathrm{Ics}^{\text {c }}$			
		3P-4P			
IEC 60947-2	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\text {cu }}\left(\mathrm{I}_{\mathrm{cu}}\right.$ letter)	36kA (F)	50kA (N)	70kA (H)	100kA (L)
	220/240 V AC	70	90	100	150
	380/415 V AC	36	50	70	100
	440/460 V AC	25	30	40	50
	480/500 V AC	16	18	30	35
	550 V AC	10	12	22	25
	690 V AC	7	8	10	12
	$\mathrm{I}_{\text {cs }}\left(\% \mathrm{I}_{\text {cu }}\right)$	100	100	100	100
	Rated making capacity under short circuit I_{cm}				
	$\mathrm{I}_{\mathrm{cm}}(\mathrm{kA})$ at 415 V	76.5	105	154	220
NEMA AB-1	220/240 V AC	70	90	100	150
	480/500 V AC	16	18	30	35
	690 V AC	7	8	10	12

6.3 Rated current (I_{n})

6.3 Load operations

Force on handle	\mathbf{N}
Opening operation	63,5
Closing operation	66
Restore operation	86,5

6.4 Electrodynamic forces

The table below shows an indication of suggested distances to keep between the breaker and the first fixing point of the conductor and bars in order to reduce the effects of the electrodynamic stresses that may be created during a short circuit. In the realization of anchorage system it is recommend the use of isolators suitable for the type of conductor used and the operating voltage.

$\mathbf{I}_{\mathbf{c c}}$ (kA)	Maximum Distance (mm)
36	350
50	300
70	250
100	200

DPX3 250 HP S10 electronic $\quad \begin{aligned} & \text { Reference(s): } \\ & \text { from } 423400 \text { to } 423403 \text {; from } 423405 \text { to } 423408 \text {; from } 423420 \text { to } 423423 \text {; from } 423425\end{aligned}$ (display version) circuit breakers
to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

According to conductor type and bar system (except Legrand bar kits), the choice of the distance to keep is to be calibrated by the installer. Also installer must take into account the weight of the conductors so that this does not affect the electrical junction between the conductor itself and the connection point.
6.5 Power losses per pole under In^{n}

Circuit breaker

	Power losses per pole (W)			
$\operatorname{In}(\mathbf{A})$	$\mathbf{4 0}$	$\mathbf{1 0 0}$	$\mathbf{1 6 0}$	$\mathbf{2 5 0}$
Cage terminals	0.49	3.07	7.85	19.20
Lugs	0.45	2.80	7.17	17.50
Spreaders	0.38	2.36	6.04	14.70
Rear terminals	0.46	2.89	7.39	18.10

Note: power losses in the table above are referred and measured as described in the standard IEC 60947-2 (Annex G) for circuit-breakers. Values in the table are referred to a single phase.

6.6 DERATINGS

according to IEC/EN 60947-1

6.6.1 Temperature

Rated current and his adjustment has to be considered relating to a rise or fall of ambient temperature and to a different version or installation conditions. The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

	Temperature Ta $\left({ }^{\circ} \mathbf{C}\right)$			
$\mathbf{I}_{\mathbf{n}}(\mathrm{A})$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
$\mathbf{4 0}$	40	40	40	40
$\mathbf{1 0 0}$	100	100	100	95
$\mathbf{1 6 0}$	160	160	160	155
250	250	250	210	190

For derating temperature with other configurations, see table A.

6.6.2 Specific condition use

Climatic conditions
according to IEC/EN 60947-1 Annex Q, Cat. F subject to temperature, humidity, vibration, shock and salt mist.

Pollution degree

for DPX³ 250 HP circuit breakers, degree 3, according to IEC/EN 60947-
2

6.6.3 Altitude

Altitude derating for DPX ${ }^{3}$

Altitude (m)	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
$\mathrm{U}_{\mathrm{e}}(\mathrm{V})$	690	590	520	460
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	$1 \times \mathrm{I}_{\mathrm{n}}$	$0.98 \times \mathrm{I}_{\mathrm{n}}$	$0.93 \times \mathrm{I}_{\mathrm{n}}$	$0.9 \times \mathrm{I}_{\mathrm{n}}$

DPX ${ }^{3} 250$ HP S10 electronic (display version) circuit breakers

Reference(s) :

from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

7. ELECTRONIC PROTECTION S10

Electronic DPX ${ }^{3}$ circuit breakers equipped with S10 protection units are fully configurable. They can be used to adapt settings as closely as possible to the requirements of your installation, either by enabling/disabling the different protection devices (tripping time delays and currents), or by altering the different trip thresholds.
The tripping curve is therefore fully customised to suit the real-life conditions of each project.

Thanks to the internal battery, the protection unit can be set even if the circuit breaker is de-energised. Tests and troubleshooting can be done directly via the circuit breaker LCD screens.

A single circuit breaker can operate according to different tripping curves depending on the settings, as explained in the following images:

See relative instruction sheet for details

Settings on DPX ${ }^{3} 250$ HP, DPX ${ }^{3} 630$ and DPX ${ }^{3} 1600$ S10 electronic protection

There are 2 options for configuring setting: locally on the circuit breaker or on a PC, smartphone or tablet:

Settings	DPX ${ }^{3} 250 \mathrm{HP}, \mathrm{DPX}^{3} 630$ and DPX ${ }^{3} 1600$ with S10 electronic protection	
	Locally on the device	By software or app
I_{r}	0.2 to $1 \mathrm{x} \mathrm{In}^{\prime}$, in steps of 1 A	0.2 to $1 \times \mathrm{I}_{n}$ - OFF, in steps of 1 A
$\mathrm{t}_{\text {d }}$	DPX 250 HP: 3-5-10-15s DPX 630 and $1600: 3$ to 30 s (7 steps)	DPX ${ }^{3} 250 \mathrm{HP}: 3$ to 15 s , in steps of 40 ms DPX ${ }^{3} 630$ and 1600 : 3 to 30 s in steps of 40 ms
$1_{\text {sd }}$	1.5 to $3 \times \mathrm{I}_{\text {r }}$, in steps of $0.5 \times \mathrm{I}_{\text {r }}$ 3 to $10 \times I_{r}$, in steps of I_{r}	$1.5 \times \mathrm{I}_{\mathrm{r}}$ to $10 \mathrm{I}_{\mathrm{n}}$ - OFF, in steps of 1 A
$\mathrm{t}_{5 \mathrm{~d}}(\mathrm{t}=\mathrm{k}, 12 \mathrm{t}=\mathrm{k})$	40 to 480 ms (7 steps)	40 to 480 ms , in steps of 40 ms
$\mathrm{l}_{\mathrm{i}}(\mathrm{t}=\mathrm{k})$	-	2 to $15 \times \mathrm{I}_{\mathrm{n}}$ - OFF, in steps of 1 A
I_{g}	0.2 to $1 \times \mathrm{I}_{n}$, in steps of $0.1 \mathrm{x} \mathrm{I}_{n}$	0.2 to $1 \times \mathrm{I}_{\mathrm{n}}$ - OFF, in steps of $0.1 \mathrm{x} \mathrm{I}_{\mathrm{n}}$
$\mathrm{t}_{\mathrm{g}}(\mathrm{t}=\mathrm{k}, 12 \mathrm{t}=\mathrm{k})$	80 to 480 ms and 1 s (6 steps)	80 ms to 1 s , in steps of 40 ms

There are several ways to configure the various settings: directly on the protection units (using the $+/-$ and $>/<$ buttons on the front face), on a PC with Power Control Station software installed, or on a tablet or smartphone via the EnerUp+ Project app.
Power Control Station software for PC and the EnerUp+ Project app for smartphone/tablet can be used to exchange data with the DPX ${ }^{3}$ S10 protection unit.

The software and app can be used to:

- monitor the status of the circuit breaker
- display information (firmware and device versions, alarms, measurements, parameters, fault log, settings)
- configure the different protection devices [1]
- update the protection unit firmware [2]
- generate reports based on the data stored and read by the protection unit [1]
- run diagnostic tests
- upload data linked to your profile and installation to the Cloud (with the EnerUp + Project app only)

[1] With the Power Control Station software only

[2] For Legrand technical support via the Power Control Station software only

Together with above protections, activated in case of electric faults, the trip unit also integrates self-protection for:

- Over temperature : in case the internal temperature of protection unit exceed $95^{\circ} \mathrm{C}$;
- Auto diagnostics: in case embedded watchdog circuit detects internal malfunctions, which could compromise the correct working of microcontroller.

DPX³ 250 HP S10 electronic (display version) circuit breakers

Reference(s) :
from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 4234 53; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518

With electronic DPX ${ }^{3} 250 \mathrm{HP}, 630$ and 1600 S10 with integrated measurement, it is very easy to monitor the parameters and consumption of the different circuits in the installation.
Electronic DPX ${ }^{3}$ circuit breakers equipped with S 10 protection units with integrated measurement can be used to display the current, voltage, active and reactive power, frequency and power factor values, as well as the energy consumption.
Alarms can be programmed on some parameters, including minimum and maximum voltage, phase unbalance, and minimum and maximum frequency.
The measured values are displayed directly on the LCD screen on the front of the equipment.
The measurement data can also be displayed on a PC equipped with Power Control Station software or remotely on a smartphone or tablet via the EnerUp+ Project app.

In the electronic unit protection, an energy metering central unit is integrated.
The possible parameters that can be measured are listed in the following table:

Measured	UNIT	DESCRIPTION
I_{1}	A	L1 realtime measured value
I_{2}	A	L2 realtime measured value
I_{3}	A	L3 realtime measured value
$\mathrm{I}_{\mathrm{N}}(4 \mathrm{P})$	A	N realtime measured value
I_{6}	A	G realtime measured value
$\mathrm{U}_{12} \mathrm{U}_{23} \mathrm{U}_{31}$ (3P)	V	Phase to Phase Voltage
$\mathrm{V}_{12} \mathrm{~V}_{23} \mathrm{~V}_{31}(4 \mathrm{P})$	V	Voltage
Freq.	Hz	Frequency
$\mathrm{P}_{\text {Tot }}$	kW	Active Power
$\mathrm{Q}_{\text {Tot }}$	kvar	Reactive Power
PF		Power Factor
$E_{p} \downarrow$	kWh	Consumed active energy
$\mathrm{E}_{\mathrm{p}} \uparrow$	kWh	Returned active energy
$\mathrm{E}_{q} \downarrow$	kvar h	Consumed reactive energy
$\mathrm{E}_{\mathrm{q}} \uparrow$	Kvar h	Returned reactive energy
$\mathrm{THDU}_{12} / \mathrm{THDU}_{23} / \mathrm{THDU}_{31}(3 \mathrm{P})$	\%	Chained Voltage THD
$\mathrm{THDV}_{1 \mathrm{~N}} / \mathrm{THDV}_{2 N} / \mathrm{THDV}_{3 \mathrm{~N}}(4 \mathrm{P})$	\%	Voltage THD
$\mathrm{THDI}_{1} / \mathrm{THDI}_{2} / \mathrm{THDI}_{3} / \mathrm{THDI}_{\mathrm{N}}$	\%	Current THD
MEM	A $-{ }^{\circ} \mathrm{C}$	Cause of the last intervention and its value

Function performance class according to IEC 61557-12

Function symbol	Performance class	Measurement range				Other complementary characteristics			
		DPX ${ }^{3}$ 250A				$\mathrm{I}_{\text {max }}$ PMD			
I_{n}		40A	100A	160A	250A	40A	100A	160A	250A
P	2	0.05 kW	0.05 kW	0.05kW	0.05 kW	48A	120A	192A	300A
		58kW	144 kW	230kW	360kW	$\mathrm{I}_{\mathrm{b}}=40 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$			
Qa, Q_{v}	2	0.1kvar	0.1 kvar	0.1kvar	0.1kvar	48A	120A	192A	300A
		58kW	144kW	230kW	360kW	$\mathrm{I}_{\mathrm{b}}=40 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$			
E_{a}	2	0... 9999 GWh				48A	120A	192A	300A
						$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$			
ErA, Erv	2	0... 9999 GW/h				48A	120A	192A	300A
						$\mathrm{I}_{\mathrm{b}}=40 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$			
f	0.1	$50 . . .60 \mathrm{~Hz}$				-			
1	1	2A	2A	2A	2A	48A	120A	192A	300A
		48A	120A	192A	300A	$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$			
I_{N}	1	2A	2A	2 A	2A	48A	120A	192A	300A
		48A	120A	192A	300A	$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$			
U	0.5	88...690V				-			
P_{FV}	0.5	-				48A	120A	192A	300A
						$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$			
THDu	5	110...690V				-			
THD ${ }_{\text {i }}$	5	40A	40A	40A	40A				
		40A	100A	160A	250A				

General remarks on protection unit

The protection units S10 are normally supplied by the internal current transformers (CTs).
When the current flowing through the circuit breaker is greater than 12% of the maximum power (20% of In for single phase load), the internal current supply ensures all operation of the protection unit, included LED status, display indications and diagnostic functions (e.g. trip test).
Display backlight and integrated measure (if available) are instead guaranteed starting from 20% of the maximum power (35% of I_{n} for single phase load), in absence of any other supply. In any case the external power supply is strongly recommended for the correct working of measurement, as well as RS485 communication.

To ensure the same performance when the load is less than 12% of the maximum power (20% of I_{n} for single phase load) to grant complete functions, one of the following optional power supplies can be used:

- external Auxiliary power supplier or, alternatively, Modbus/EMS communication interface.
- power supply temporarily connected to frontal USB socket, connected to a 5V DC power bank, Dongle BLE or PC.

DPX³ 250 HP S10 electronic
(display version) circuit breakers

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518

8. CONFORMITY

DPX ${ }^{3}$ HP range of product concerning circuit-breakers exceed compliance with the IEC/EN standard 60947-2.
Certification available by IECEE CB-scheme or LOVAG Compliance scheme.
DPX ${ }^{3}$ HP respect the European Directives REACh, RoHS, RAEE.

For specific information, please contact Legrand support.

8.1 Marking

Product (circuit breakers) are provided with labelling in full conformity to the referred standard and directives requirements by laser or sticker labels (for illustrative purposes only) as:

Product laser label on front
-Manufacturer responsible
-Denomination, type product, code
-Standard conformity
-Standard characteristics declared
-Coloured identification of I_{cu} at 415V

Product sticker label on side
-Manufacturer responsible
-Denomination and type product
-Mark/Licence (if any)
-Directive requirements
-Bar code identification product
-Manufacturing Country

Mark sticker label on side
-Product code
-Mark/Licence (if any)
-Country deviation, if any

Packaging sticker label

-Manufacturer responsible
-Denomination and type product
-Standard conformity
-Mark/Licence (if any)
-Directive requirements
-Bar code identification product

423423

DPX 320 HP S10 electronic
(display version) circuit breakers

Reference(s) :

from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

9. EQUIPMENTS AND ACCESSORIES

9.1 Releases (for DPX ${ }^{3}$ 125/250 HP and DPX ${ }^{3}$ 160/250)

- shunt releases with voltage:

12 Vac and dc
ref. 421012
24 Vac and dc
48 Vac and dc
$110 \div 130 \mathrm{Vac}$
$220 \div 277$ Vac
$380 \div 480$ Vac ref. 421013 ref. 421014 ref. 421015 ref. 421016 ref. 421017

Maximum power $=400 \mathrm{VA} / \mathrm{W}$

- undervoltage releases with voltage:

12 Vac and dc
ref. 421018
24 Vac and dc
48 Vac and dc
$110 \div 130 \mathrm{Vac}$ and dc
ref. 421019
$220 \div 240$ Vac
277 Vac
$380 \div 415$ Vac
$440 \div 480$ Vac ref. 421020 ref. 421021 ref. 421022 ref. 421023 ref. 421024 ref. 421025

Maximum power = 4 VA
Circuit breaker opening time $<50 \mathrm{~ms}$
UVR releases can be used on DPX3 125/250 HP starting from batch 19W15

- time-lag undervoltage releases (800 ms)

Time-lag modules with voltage:

230 V ac
400 V ac
Release
ref. 026190 ref. 026191
ref. 421098
(to be equipped with a time-lag module 0261 90/91)

9.2 Auxiliary contacts

For version of $\mathrm{DPX}^{3} 250$ HP electronic version, auxiliary contacts are integrated inside module M.C.I (see instruction sheet for details).
Here a connection scheme to get auxiliary functionality:

To get more information on auxiliary mounting procedures, please refer to product instruction sheet.

9.3 Universal keylocks

These keylocks must be used for all the accessories that can be locked:

- rotary handle
- motor operator
- plug-in mechanism
- draw-out mechanism

For each of these, a specific accessory (indicated in the specific section of this datasheet) must be added in order to get the complete locking kits for the specific application.

- 1 lock +1 flat key with random mapping
- 1 lock + 1 flat key with fixed mapping (EL43525)
- 1 lock +1 flat key with fixed mapping (EL43363)
- 1 lock +1 star key with random mapping
ref. 423880
ref. 423881
ref. 423882
ref. 423883

DPX 320 HP S10 electronic
(display version) circuit breakers

Reference(s) :
from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

9.4 Rotary handles

Direct on DPX ${ }^{3}$ (with auxiliary option)

- Standard (black)
ref. 423800
- For emergency use (red / yellow) ref. 423801

Vari-depth handle IP55 (with auxiliary option)

- Standard (black)
ref. 423802
- For emergency use (red / yellow)

Locking accessories (for rotary handle with auxiliary option)

- Key lock accessory for direct rotary handle
ref. 423804
- Key lock accessory for vari-depth rotary handle
ref. 423805
(ref. 423805 is compatible with DPX 125 HP also)
Ref. 423804 and 423805 must be used with universal keylocks to get the complete locking kit for rotary handle

9.5 Motor operators

For synchronized operations (energy storage type):

- 24 Vac and dc
ref. 423840
- 48 Vac and dc
ref. 423841
- 110 Vac
ref. 423842
- 230 Vac
ref. 423843

Technical parameters:

Voltage	Property	AC		DC	
		Opening	Closing	Opening	Closing
24 V ac/dc	Maximum inrush power (VA)	75	430	55	320
	Rated power (VA)	45	-	20	-
	Absorption time (s)	2.8	0.01	3.3	0.01
	Operating current time (s)	1.1	0.03	1.2	0.03
48 V ac/dc	Maximum inrush power (VA)	85	1000	70	690
	Rated power (VA)	65	-	15	-
	Absorption time (s)	3.3	0.006	3.8	0.006
	Operating current time (s)	1.1	0.02	1.3	0.02
110V ac	Maximum inrush power (VA)	95	600	-	-
	Rated power (VA)	60	-	-	-
	Absorption time (s)	3	0.02	-	-
	Operating current time (s)	1.0	0.03	-	-
230 V ac	Maximum inrush power (VA)	125	460	-	-
	Rated power (VA)	70	-	-	-
	Absorption time (s)	2.5	0.08	-	-
	Operating current time (s)	0.9	0.03	-	-

It is necessary to foresee a protection device (e.g. fuse) along the motor operator power line. The correct size of the fuse depends on the motor version and on the number of users.
Here a schematic example:

Locking accessory (for motor operator)

- Padlock (for motor operator locking)
ref. 423846
- Key lock accessory for motor operator
ref. 423845
Ref. 423845 must be used with universal keylocks to get the complete locking kit for motor operator

9.6 Mechanical accessories

- Padlock (for locking in "OPEN" position)
ref. 421049
(ref. 421049 is compatible with DPX 125 HP and DPX ${ }^{3}$ 160/250)
- Sealable terminal shields:

$$
\begin{array}{ll}
\circ & \text { Set of 2 (for 3P) } \\
\circ & \text { ref. } 423823 \\
& \text { ref. } 423824
\end{array}
$$

- Insulated shields:

$\circ \quad$ Set of 2 (for 3P)	ref. 423834
$\circ \quad$ Set of 3 (for 4P)	ref. 423835
$34 / 35$ are compatible with DPX3 125 HP also)	

(ref. 4238 34/35 are compatible with DPX ${ }^{3} 125$ HP also)

9.7 Connection accessories

Cage terminals

- Set of 3 terminals for cables $150 \mathrm{~mm}^{2}$ max (solid) ref. 423830 or $120 \mathrm{~mm}^{2}$ max (flexible) $\mathrm{Cu} / \mathrm{Al}$
- Set of 4 terminals for cables $150 \mathrm{~mm}^{2}$ max (rigid) ref. 423831 or $120 \mathrm{~mm}^{2}$ max (flexible) $\mathrm{Cu} / \mathrm{Al}$

Spreaders (incoming or outcoming):
$\begin{array}{ll}\bullet \quad \text { Set of } 3 \text { (for 3P) } & \text { ref. } 625014 \\ \bullet \quad \text { Set of } 4 \text { (for 4P) } & \text { ref. } 625018\end{array}$
Rear terminals (incoming or outcoming):

- \quad Set of 3 (for 3P)
ref. 423821
- \quad Set of 4 (for 4P) ref. 423822

9.8 Plug-in version

(A plug-in is a DPX ${ }^{3} 250$ HP fitted with special terminals and mounted on a plug-in base)

Bases

(for plug-in and draw-out versions for DPX3 250 HP and DPX³-I 250 HP)

- Plug-in/draw-out base for 3P
ref. 423850
- Plug-in/draw-out base for 4P
- Plug-in/draw-out mobile part kit for 3P
- Plug-in/draw-out mobile part kit for 4P
ref. 423851
ref. 423852
ref. 423853

Plug-in accessories

Locking accessory (for plug-in)

- Key lock accessory for plug-in
ref. 423863
Ref. 423863 must be used with universal keylocks to get the complete locking kit for plug-in version

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

9.9 Draw-out version

(A DPX ${ }^{3} 250$ HP draw-out version is a plug-in DPX ${ }^{3} 250$ HP fitted with a "Debro-lift" mechanism which can be used to withdraw the breaker while keeping it on its base)
"Debro-lift" mechanism
(supplied with a rigid slide and handle for drawing-out)

- transformation kit for 3P
ref. 423860
- transformation kit for 4P ref. 423861

Fontal masks for draw-out version

(to provide in addition to debro-lift mechanism according to accessory mounted)

- Frontal module, with frontal mask (3P and 4P)
ref. 423855 (if neither motor operator nor rotary handle are mounted)
- Frontal mask for motor operator (3P and 4P)
ref. 423856

Locking accessory (for draw-out)

- Padlock for draw-out position
ref. 423864
- Key lock accessory for draw-out
ref. 423862

Ref. 423862 must be used with universal keylocks to get the complete locking kit for draw-out version

Auxiliary contacts

- Automatic auxiliary contacts for draw-out version
ref. 422230
- 6 contact connector (under sliding contacts)
ref. 009819
(Ref. 009819 can be used with both plug-in and draw-out version)

9.10 Interlock mechanism

(for interlocking $2 \mathrm{DPX}^{3} 125 \mathrm{HP}$ or $2 \mathrm{DPX}^{3} 250$ HP breakers)

No frame mixing in interlock mechanism

- Interlock mechanism - standard version ref. 423827 (for fixed version DPX ${ }^{3} 125 \mathrm{HP}$ and DPX 250 HP)
- Interlock mechanism - for electronic module ref. 423828 (for fixed version DPX ${ }^{3} 125 \mathrm{HP}$ and DPX ${ }^{3} 250 \mathrm{HP}$)
- Interlock plate for DPX³ 250 HP
ref. 423826
- Rear interlock mechanism
ref. 423829 (for DPX ${ }^{3} 250$ HP plug-in and/or draw-out version) If used ref. 0098 19, maximum 1 set

9.11 Specific accessories for electronic version Auxiliary power supply

- For supplying electronic units
ref. 421083
Is used to supply DPX ${ }^{3}$ electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit. It is mandatory in case of electronic breakers with integrated measure and not interconnected in a supervision system (MODBUS network not requested) to correctly manage the measure functions

Technical characteristics:

- Input voltage: 24 V ad/dc (+/-10\%)
- Enclosure: 2 DIN modules
- Output: up to 250 mA (to supply many circuit breakers according to the following table):

421083	DPX ${ }^{3} 250 / 630 / 1600$	[mA]
but $\mathrm{MAX}=250 \mathrm{~mA}$	Electronic (S2/Sg)	50
	Electronic with power metering ($\mathrm{S} 2 / \mathrm{Sg}$)	62.5
	Electronic with residual current protection (S2)	50
	Electronic with residual current protection and power metering (S2)	62.5

According to single absorptions, it can be possible to connect more than one breaker

MODBUS communication

- RS485 MODBUS communication interface ref. 421075

Is used for sharing on MODBUS network all information managed by DPX 3 electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit.

Technical characteristics:

- USB local PC connection
- Input voltage: 24 V ad/dc (+/-10\%)
- Enclosure: 1 DIN modules
- MODBUS address configuration / transmission mode / transmission speed by physic configurators
- Output relay $(220 \mathrm{~V}-0,2 \mathrm{~A})$: to signal tripped position

Consumption: 90 mA
It is possible to connect only one breaker to the interface.
In case of use of MODBUS interface 4210 75, the external power supply module 421083 is not necessary because the external power is already provided by the MODBUS module

Web server

- For remote viewing of values collected on electricity meters and multi-function measuring units

$$
\begin{array}{ll}
32 \text { metering points } & \text { ref. } 026178 \\
\text { Unlimited metering points } & \text { ref. } 026179
\end{array}
$$

Software

- To display values collected on electricity meters and multifunction measuring units on a PC connected to the network

$$
\begin{array}{ll}
32 \text { metering points } & \text { ref. } 026188 \\
\text { Unlimited metering points } & \text { ref. } 026189
\end{array}
$$

Touch screen

- To show data collected by $\mathrm{DX}^{3}, \mathrm{DPX}^{3}, \mathrm{DMX}^{3}, \mathrm{EMDX}^{3}$. It can manage up to 8 devices ref. 026156

DPX ${ }^{3} 250$ HP S10 electronic (display version) circuit breakers

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

10. CURVES

10.1.1 Tripping curve [$1 / 3$]

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
------------	long time trip curve
Current tolerance	10\% up to trip curve

DPX ${ }^{3} 250$ HP S10 electronic (display version) circuit breakers

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518
10.1.2 Tripping curve [$2 / 3$]

Update: 17/11/2022

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
Current tolerance	short time trip curve

DPX $^{3} 250 \mathrm{HP}$ S10 electronic
(display version) circuit breakers
Reference(s) :
from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 423463 ; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518

DPX³ 250 HP S10 electronic (display version) circuit breakers
from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 423443 ; from 423445 to 423448 ; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518

10.2 Ground Fault curve

DPX ${ }^{3} 250$ HP S10 electronic
(display version) circuit breakers

Reference(s) :

from 423400 to 4234 03; from 423405 to 4234 08; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 4235 13; from 423515 to 423518
10.3.1 Pass-through specific energy characteristic curve (breaking capacity $\mathrm{I}_{\mathrm{cu}}<=50 \mathrm{kA}$)

Value	Description
I_{cc}	short circuit current
$\mathrm{I}^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{~s}\right)$	pass-through specific energy

DPX ${ }^{3} 250$ HP S10 electronic
(display version) circuit breakers

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 423423 ; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518
10.2.2 Pass-through specific energy characteristic curve (breaking capacity $\mathrm{I}_{\mathrm{cu}}>50 \mathrm{kA}$)

Value	Description
I_{cc}	short circuit current
$\mathrm{I}^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{~s}\right)$	pass-through specific energy

DPX ${ }^{3} 250$ HP S10 electronic
(display version) circuit breakers

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518
10.4.1 Cut-off peak current characteristic curve (breaking capacity $\mathrm{I}_{\mathrm{cu}}<=50 \mathrm{kA}$)

Update: 30/08/2019

Value	Description
I_{cc}	estimated short circuit symmetrical current (RMS value)
I_{p}	maximum short circuit peak current
	maximum prospective short circuit peak current corresponding at the power factor
	maximum real peak short circuit current

DPX ${ }^{3} 250$ HP S10 electronic
(display version) circuit breakers

Reference(s) :

from 423400 to 423403 ; from 423405 to 423408 ; from 423420 to 4234 23; from 423425 to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518
10.4.2 Cut-off peak current characteristic curve (breaking capacity $I_{c u}>50 \mathrm{kA}$)

Update: 20/11/2020

Value	Description
I_{cc}	estimated short circuit symmetrical current (RMS value)
I_{p}	maximum short circuit peak current
	maximum prospective short circuit peak current corresponding at the power factor
	maximum real peak short circuit current

DPX 3250 HP S10 electronic $\quad \begin{aligned} & \text { Reference(s): } \\ & \text { from } 423400 \text { to } 423403 \text {; from } 423405 \text { to } 423408 \text {; from } 423420 \text { to } 423423 \text {; from } 423425\end{aligned}$
(display version) circuit breakers
to 4234 28; from 423440 to 4234 43; from 423445 to 4234 48; from 423450 to 423453 ; from 423455 to 423458 ; from 423460 to 4234 63; from 423465 to 4234 68; from 423480 to 423483 ; from 423485 to 423488 ; from 423500 to 423503 ; from 423505 to 423508 ; from 423510 to 423513 ; from 423515 to 423518
A) Derating Temperature and configurations

	Ambient temperature									
	$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
Fixed version	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$I_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$
Cage terminals, flexible cable	250	1	250	1	230	0.92	210	0.84	190	0.76
Cage terminals, flexible cable + sealable terminal shields	250	1	238	0.95	200	0.80	175	0.70	175	0.70
Lugs, flexible cable	250	1	213	0.85	200	0.80	200	0.80	150	0.60
Spreaders, flexible cable	250	1	250	1	200	0.80	175	0.70	163	0.65
Rear terminals, flexible cable	250	1	213	0.85	188	0.75	163	0.65	163	0.65
Plug-in/draw-out version	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$								
Cage terminals, flexible cable	250	1	238	0.95	238	0.95	233	0.93	225	0.90

For further technical information, please contact Legrand technical support.

Data indicated in this document refers exclusively to test conditions according to product standards, unless otherwise indicated in the documentation.
For the different conditions of use of the product, inside electrical equipment or in any case inserted in the installation context, refer to the regulatory requirements of the equipment, local regulations and design specifications of the system.

